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Abstract

We study some properties of the zeros and the asymptotic behavior of orthogonal polynomials with
respectto varying measures on the unit circle. In the proofs, some techniques of rational approximation
are used.
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1. Introduction and main results

Let M denote the set of finite positive Borel measureq@r2z) with an infinite set
of points in their support, and let € M. Given a sequence of polynomidl¥,(z) =
[Tjz1 (z = ©a NP2 with |0, ;| <1, 1</ <n, set

du(0)
[Wa(el)[2’
In the sequel, we assume thatis finite for alln € N. In particular, this is true if all the
zeros ofW, are inside the unit disk for ail € N. Obviously,u, € M, n € N. For everyn,

let {¢,, (1,; 2)},,_o be the sequence of orthonormal polynomials with respegf, tahat
is,

du,(0) = neN.

O (s 2) = Km ()™ + lower degree terms, «, (1,) > 0
and

2n
. N 07 k 7 l
/O mk(un;z)mm(un;z)dun(9)={1 7 m z=¢"

k=m,
Setd,, (1,; 2) = 22422 andd}, (u,: 2) = 2" ® (g, 1/%).

If w,; =0,j =1,2,...,n, then|W,(e!%)| = 1,0 € [0, 2n), and the orthogonal
polynomials with respect to these varying measures become the orthogonal polynomials
with respect to the fixed measuyre

Another case of particular interest arises when we ke ) = ¢, (1; z) and the varying
weight isd0/|¢,, (1 2)|. Using the Geronimus identity (s§& p. 198, formula (2.2)])

J ‘ |
/|(p(it—'z)|2d9=/zfdﬂ, j=0,%1,..., £n, Z:ele’
n \Hs

itfollows thatg,, (d0/|@, (1: )| z) = @, (u: z),m = 0,1, ..., n. Obviously, this formula
can be written in a more general way, namely

j _ |
/meZ/Zjdﬂns j=0,%£1,..., £m, z=¢" )
m ne <

this expression will be useful in some places in this paper.

Orthonormal polynomials with respect to varying measures were introduced about 25
years ago by A.A. Gonchar and G. Lépez in connection with a systematic study of the con-
vergence properties of interpolating rational functions with free poles to Markov functions.
In [10], Lopez presents orthogonal polynomials with respect to varying measures in such a
way that unifies the theory for the cases of measures with bounded and unbounded support.
That paper also shows that orthogonal polynomials with respect to varying measures are
a powerful tool in solving problems where a fixed measure and orthogonality in the usual
sense are involved. Other applications in that direction can be found in [4,5].

This paper focuses on two goals. First, we study the asymptotic behavior of orthogonal
polynomials with respect to varying measures. Polynomial approximation is an effective
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instrument in finding properties of orthogonal polynomials with respect to fixed weights
(see[13,14]). In contrast, we use rational approximation to obtain the following result on
the asymptotic behavior of orthogonal polynomials with respect to varying measures. We
use the standard notatiditf || .» ) = (fcz,7I | 1? du)Y/P and, as usual, the Lebesgue—Radon
decompositionly = 1'd0 + du,. We suppose that' = +oo on the support ofi,.

Theorem 1. If ¢/ > 0a.e. on[0, 2), then

2 1

e

wherell,, denotes the set of polynomials of degree at moktareover,if

oo

n

<2min
L

cpnell, g, (2
L2(p)

/

Dp (:un ; )
Wy

W, () -0

lim = )
n—00 W;(Z)
uniformly on compact subsets{af: |z| < 1},then
. . 1
lim min L :ppell,p =0. 4)
00 AN 120

Remark 1. An alternative sufficient condition for (4) is lif, « Z;f:l(l— |n, j]) = o0,
since this implies (3) (see [17, Theorem 9, p. 247]).

For fixed measures, a formula similar to (2) allowed Nevai and Totik to give in [13]

a simple proof of Denisov’s theorem [6]. Following step by step the proof in [13], using
Theorem 1, and the method of varying measures employed in [4], we get Denisov’s theorem
on an arc (see [16, Theorem 13.4.4] for an alternative proof).

Itis known that monic orthogonal polynomials with respect to a fixed measure on the unit
circle are completely determined by some of their zeros (see [2]). In the next theorem we
give a bound of the-root limit of the reflection coefficients of such orthogonal polynomials;
this bound is given in terms of the zeros of the orthogonal polynomials.

Theorem 2. Suppose tha®, (u; z) has a zero inD, = {z : |z|<r} for everyn € N
sufficiently large. Then

lim sup |®, (; 0)|" < min{1, 2r}. (5)

n— o0

The paper is organized as follows. In Sect®mwe prove the two main results just
stated. Then, in Section 3 we give some results on varying measures related to Theorem 1.
In Section 4 we prove some corollaries of Theorem 2 dealing with zeros of orthogonal
polynomials; in particular, we show how to answer a question posed in [16]. Finally, we
give some numerical experiments that indicate that the estimate in (5) seems to be sharp.
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2. Proof of the main results
2.1. Proof of the Theorem 1

Let us begin with the following lemma, which is a small variation of Wdlsh Corol-
lary 2, p. 246]:

Lemma 1. Let{W,(z)};° , be asequence of polynomials as indicated above. The following
conditions are equivalent:

(@) lim,—o W,(2)/ W, (z) = 0 uniformly on compact subsetsf{af: |z| < 1}.
(b) For all f holomorphic onD1 = {z : |z| <1}, there exists a sequence of polynomials
{Pn(2)}221 such thatim,, . o p,(2)/ W, (z) = f(z) uniformly onDj.

Let us also state another auxiliary result. Although it seems to be well-known, we could
not find reference to its explicit proof, so, for completeness, we include it here.

Lemma 2. Assume thatim, .. W,(z)/W,’(z) = 0 uniformly on compact subsets of
{z : |z| < 1}. Then,for every continuous functiofi onT" = {z € C : |z| = 1}, there exist
two sequences of polynomidls, (2)}72 1, {gx(2)};2, with degp,(z) <n, degq,(z) <n,
such that

Pa(@) + qa (D)
W, (2) |2

nli_)moo max{ f(@— 1z € F} =0. (6)

Moreover,if f is nonnegative ol” we can find polynomialg, (z), n € N, such that

1,(2) 2
Wi (2)

lim max{ f(@—

n—oo

:zeF}:O. (7)

Proof. Lete > 0 andf be a continuous function on. From Weierstrass’ theorem on the
approximation of continuous functions by trigonometric polynomials (for exampl¢lgee
p. 38]), we know that there exist polynomialg), 7(z) such that

max{lf () = (s2) + 1L/l 2 € T} < . ®)

From Lemmal, we can find a natural numbaf, and two sequences of rational functions

{Td}, {%:} such that, for alh > N,
& &
:zeF}<Z, max{ :zel“}<z,
wherer(z) denotes the polynomial whose coefficients are the conjugate of the coefficients
of 1(z). Thus, for alln > N,

max S( ) +t (1-> _ W_;’k(%)pn,l(Z) + qn,l(%)W:(z)
Z |Wn(Z)|2

DPn,1(2)
W (2)

Qn,l(Z)

1(z) — Wr )

max{ s(z) —

:zeF]<%. 9)
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SinceW; (3)pn.1(2) +dn1(3)W;(2) = pu(2) + 4a(3), wherep,, g, are polynomials of
degree at most, and|W,"(z)| = |W,(z)| onT’, (6) follows immediately from (8) and (9).

Statement (7) can be deduced from (6) and the fact that every positive trigpnometric
polynomial of degree can be represented agz)|? wheresis an algebraic polynomial of
degreen (see [7, p. 211]). O

It is worth remarking that the condition limn, o, @, (1; 0) = 0 is equivalent to
lim @, (w; 2)/ D) (u; 2) =
n—0oo

uniformly on compact subsets §&f : |z| < 1}. Thus, taking into account Lemn2a such
orthogonal polynomials are a good election as denominators in rational approximation of
continuous functions oh.

We already have all the machinery to prove Theorem 1. Using({Hat/? e L7 (u),
and the Cauchy—Schwarz inequality, we have

‘qon(unr 21
Wa w L)
‘Mz_ L | A | 2
b W Vil [ Wa Llw) Vi IWal il Li(p
wn(un;-)‘ (‘@(un, )‘ )
mn(unw L1

N ES (’P_ _ i)
VIl Vi g
‘q’n(ﬂns )' Pn i Pn| 1
W (2) BRI PP I N .
But taking (1) into account, we obtain
2
Wy F 1 on (s ) 21
21 2n 2
Pn Pn Pn 1
:1—2/ — ’d0+f —1| d — - — .
0 Wy \/p 0 Wy s Wy \/,17 L2(w)
Hence,
2
’%wn;-) _ o ‘& 1
/ ~ '
W il Wl -V L2()

This proves (2).
Now, let us show (4). The set of continuous functions is dense?iiu). The function
1/\/ﬁ belongs ta.2(u) and is nonnegative, hence it can be approximated in the metric of
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this space by positive continuous functions. In turn, from Ler@mery positive continuous
function onI” can be approximated by functions of the fot' ((Zz)) (with p, € I1,) and
the proof is concluded. [J

2.2. Proof of Theorem 2

Recall that, for every >0, we have

D1 (15 2) = 2D (1 2) + Cpg 1 (s 0)D; (14; 2),
Oy 1 (5 2) = Oy (13 2) + Ppy1 (15 0) 2P (13 2) (10)

(see, for exampld8]).
Also, we will use that, fo€, {5 in{z € C: |z] < 1}, the following inequality holds:

{1—0 . 1C1l + 1Co]
1- 0l | 141411l
(see[17, p. 229]). From (10) and this inequality we obtain
‘<Dn+1(u; | _ | 2Pn (s 2) + Paga (s D7 (1t 2)
D) || O (s 2) + Py (15 0) 2Py (15 2)
@y (15 2) n(u, z)
(Dn ) 0 (Dn 5 0
- Z@Z(M;Z)+ +1(1; 0) |z I‘ + | Dp11(1; 0)]
 pyp— oY (52|,
1+d, 0 — 1+ |0 10| | =—0/——
+1(1; 0)z e 2) + [ Dy r1(y; 0 O (1 2) |z]
(11)

Now, we suppose that, for evenyz, is a zero ofd, (i; z) in D,. Then

D, (115 Zn+1)
Dpr1(1;0) = —z541 ﬁ
s AN
and (11) becomes
2 |‘<1> n (15 2) el D, (1; Zn+1)
‘ @, 1(15; 2) | O (5 zr1)
D, (1 D, (u; ’
Q11 2) 1+|Zn+1|‘ :(u Zn+1) ‘ :(u 2) |
O (14 znt1) | | Py (s 2)

Since|z, 41| <,

H q)n-‘rl(,u; 2)
UMRT(TEEI] S

H D, (1; 2)
@, (u;2) | p
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Thus
‘ (Dn—'rl(,u; 2)
;. 1(152)
lim su s br <o,
n—>oop D, (u; 2)
(I)Z(,u; Dlp
hence,
lim sup |®,, (x; 0)|*/" < lim sup :(,u. 2) <2r
n—>00 n—00 (I)n(,u, 2) D

and the proof is concluded. [J

3. Some results on varying measures

Using Lemma2 on rational approximation, we can easily prove the following result
which is a cornerstone in the theory of orthogonal polynomials with respect to varying
measures. The original proof of this result can be found in [9, Theorem 1].

Corollary 3. Iflim,_c W,(z)/ W;(z) = Ouniformly on compact subsetsfef: |z| < 1},
then,for every continuous functiofi onT’, we have

W, (2)]? :

Jm [ @ O a0 [ r@auo. 2=
19, (15 2)

Proof. Let f be a continuous function dn. Taking into account Lemm2, there exist two

sequences of polynomialp, (z)}, {¢» (z)} with degp, <n and degy, <n, such that

@+ .
Jm o =@ a=e

uniformly onT". Also, let us note thg, (z)|2 = W, (z) W, (z) andp, (z) +Cln(%) are linear
combinations of/ (j = 0, +1, ..., +n). Then, using (1) for = ¢'?, we have

W 2
Vf() W) 2d9—/f(1)du(9)‘
[P, (15 2]

n(2) +an G
</‘f(z)_p(z) an(3)

Wao) 2
«

| W, (2)]2
|9, (14, 2)12

Pn(@) + gu(2)

waor 1@

du(0)
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Pn(@) + qu(}) | W (2)[2
< - : 40 /d 9>
e LA N T ( TR A A
pn(Z) +%1(l)
=2 R /d 0
feul"p @) W) u(0)

and the proof easily follows. [J

To finish this section, let us remark that, using the arguments employéd]inve can
obtain the following result. The statement of this corollary is contained in [10, Lemma 2]
where, instead of lign, oo W, (z)/ W, (z) = 0, a weaker Carleman-type condition in terms
of generalized moments is imposed. Our approach considerably simplifies the proof in this
restricted situation.

Corollary 4. If ¢/ > 0 a.e. in[0, 2n), and lim,_.o W,(z)/ W, (z) = 0 uniformly on
compact subsets ¢f : |z| < 1},then

27
iMoo /
0

4. Concerning Theorem 2

2
. /1
|§Dn(.un’z)| 'u(g)_l do =0, z:eig.
Wy (2)]

4.1. An alternative description and consequences
It is worth noticing the following alternative description of Theor@m

Corollary 5. LetR = limsup,_, ., |®,(u; 0)|¥" and0<r < R/2. Then,there exists a
sequence of indices € N such that the polynomialgd, (u; z) : n € A} have no zeros in
{z:lzl<r}

Also, let us reproduce the following theorem from Nevai and Totik. We will see that its
combination with Corollanp will have nice consequences.

Lemma 3 (Nevai and Totif12, Theorem 1]).For every n,let {z, x};_, be the zeros of
@, (1; z) ordered in such a way that, x+1| < |z, k|- Then

R = lim sup |, (u; 0)|¥/" = ir/lf lim sup |z, x|

n—o00 n—o0

In particular, the number of points ife, «};_; N {z : [z| >} is bounded as a function of n
for everyr > R.

Let us denote

Zsw(#) = {20 € Dy :lim dist (zo, {zeros of®, (t; )}) = 0} .
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In [16, § 1.7], Simon asks what type of set cag_be. Following this line, Toti¥ asked if
ZsL = D1 could be possible. Combining Corollary 5 and Lemma 3 we obtain that

{ziri<lzl <r2} & Zso

for everyri, r» € R satisfyingry < rp/2.
Furthermore, using Corollay we can prove the following result:

Corollary 6. If lim,_, ®,(u; 0) = 0, then there exists a sequentec N such that
n
lim 1- i) = oo.
lim ,Z_;( D)

Proof. Let us divide the proof in two cases.

(i) Case wherimsup, . ., |®,(u; 0)|*/" < 1: By Nevai-Totik’s theorem (Lemma
in this paper), the number of zeros ®f, as a function oh is bounded outside the circle
{z : |z|<r} for everyr such that 1> r > limsup,_, ., |®,(x: 0)|*/". Consequently,
lim, o Z?ZJ_ a- |z, j1) = oo.

(i) Case wherlimsup,_, o, |®,(; 0|/ = 1: Let us taker < 3. By Corollary 5,
there exists a sequence of indicksC N such that{®, (i; z) : n € A} has no zeros in
{z : lz|<r}. Then, for any number§, ; e C(n e A, j=1,....,m)with [, ;| = |za,jl,
we have, ; ¢ {z : |zI<r}and lim,ea [Tj—q 1&n,j1 = lim,ep [Tj2; |21 = 0. Thus,

¥ =[] ITon e
j=1 1_éil,jz

is an uniformly bounded sequence of functions dfdz) # 0 when|z| <r. On the other
hand, every limit function of the family¥, : n € A} vanishes at = 0; hence, by
Hurwitz’s theorem, it vanishes identically. Therefo{®#,, : n € A} converges uniformly
to 0 on compact subsets fof : |z] < 1}. Now, applying17, Theorem 9, p. 247] it follows
that lim,,cp Z?:l A —lzn,j) =00. O

Remark 2. With respect to the reciprocal of Corollaéy let us note the following. Since

n n n
|0, (1; 0| = [ ] Iznjl =xp| D loglza jl | <exp| =D (L —lza D |,
j=1

j=1 j=1

if im e Z’;Zl (1= |zn,jI) = oo, it follows that lim, .5 @, (x; 0) = 0.
4.2. Limiting distribution of zeros

Theorem?2 gives some information about the limiting distribution of the zeros of the
orthogonal polynomial®, (i; z). Let us see why.

3In the V International Meeting on Approximation, held at Ubeda (Spain) on June 9-14, 2004.
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As usual, giverp,, a polynomial of degrem, letv(p,)) = (1/n) Z{C:pn(o:O} o¢ denote the
normalized zero counting measurepf For A > 0, letv; be the arc-measu@nl)~1d0
onthe circleC, = {z € C : |z| = 4}. Finally, let us take

p = limsup |®, (x; 0)|Y" < min{1, 2r}.

n— 00

(i) Casep < 1 (of coursethis always happens if < %): From[15, Theorem 5.3], we
know that every weakly convergent subsequende @, (u; -))} converges to, for some
J.<2r.Inotherwords, leh < N be a sequence for which lipgs |®, (i; 0)|Y/" = p. Then,
the support of the zero distribution of the orthogonal polynon{|s(y; z)},.ca is a circle
of radius at most 2

(i) Casep = 1 (observe that this requires that> %): As in Lemma 3, fom fixed,
let us consider the zerds, «};_; of ®,(u; z) ordered with|z, x11|<|zs.k|. Then, we
deduce that limsyp, o, |zx,x| = 1 for everyk > 1. So, there existd = A(k) < N such
that lim,cp |zn,k| = 1. We can obtain additional information in the special case when
lim, o |®P,(1; 0)| = o exists (see [1, Proposition 2.1] for items (a) and (b) below):

(@) If « € (0, 1), then for every > 0 there existag € N such that

ik €{zia—e < |zl <1}, 1<k<n,

whenn >ng.

(b) If & = 1, all the zeros ofd, (i; z) are, forn large enough, arbitrarily close to the unit
circleT".

() If « = O then lim, o + >_1 |®;(; 0)] = 0. In this way[15, Theorem 5.3] states
the weak convergence

W@, (15 ) —> 1,

wherey is a measure whose balayagelois (2r) 1 d0.

4.3. Graphics of zeros

Finally, we include some graphics that indicate that the bound (5) may be sharp. The
orthogonal polynomials are generated with the following method:

Givenr < 1,for N € N large enoughlet us taker; = rexp((2j + D)mi/N), j =
0,1,..., N — 1. Then we obtairy;, and the orthogonal polynomiak®, as follows. For
k = 0,we take®1(z) = 1. For k = 1, we set

z1 = lo,
D1(z) =z —21.

Fromk = 2to N,we choose; € {t; : j =0,..., N — 1} \ {zx—1} such that

_ max{ ‘ D 1(1)
Qi1 (1)

“Dk—l(zk)
(D/tfl(Zk)

:[:tj, j:O,...,N—l, t#Zk—l},
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Fig. 1. Zeros whem = 0.2, N = 100.

Fig. 2. Zeros whem = 0.3, N = 100.

and we make

Dp_1(zk)

Dy (2) = 2Pp—1(2) — 2k m

(I)Zil(z) .

S0, (zx) = 0.Moreover taking into account Verblunsky’s theor¢eee[16]), there exists
a measuret € M such that{®,, = ®,(i; ) :n=0,1,2,...}.
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Fig. 3. Zeros whem = 0.5, N = 100.

)
Y

Fig. 4. Zeros whem = 0.75, N = 100.

We illustrate this situation with several figures coming from numerical experiments using
the described algorithm. In each of the Fifjs4, we have a different value for the radius,
i.,e.,r = 0.2,0.3,0.5, and 0.75, respectively, and we have plotted the zeraB;gf. In
accordance with the described method, a zero in the circle of ratias been fixed; in the
figures, observe this circle and the zero. We can see that almost all the other zeros are near



34 M.P. Alfaro et al. / Journal of Approximation Theory 135 (2005) 22—-34

the circle of radius mifi, 2r} (in the figures, this circle is represented with gray color).
Moreover, we have computed the values [@100(0)|/1%% they are (854, 0.531,0.881,

and 0996, respectively. Frofi5] (see also [11]), this means that in these cases the bound (5)
seems to be exact.
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